Stability

System External Stability

 Externally stable systems: Bounded input results in bounded output (system is said to be stable in the BIBO sense)

Electrical System

v(t) = R i(t)

Mechanical System

Linear Differential Systems (1)

- Many systems in electrical and mechanical engineering where input x(t) and output loop current y(t) are related by differential equations
- For example:

 $v_L(t) + v_R(t) + v_C(t) = x(t)$

$$\frac{dy}{dt} + 3y(t) + 2\int_{-\infty}^{t} y(\tau) d\tau = x(t)$$

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y(t) = \frac{dx}{dt}$$

Linear Differential Systems (2)

Find the input-output relationship for the transational mechanical system shown below. The input is the force x(t), and the output is the mass position y(t)

Linear Differential Systems (3)

 In general, relationship between x(t) and y(t) in a linear time-invariant (LTI) differential system is given by (where all coefficients a_i and b_i are constants):

$$\frac{d^{N}y}{dt^{N}} + a_{1}\frac{d^{N-1}y}{dt^{N-1}} + \dots + a_{N-1}\frac{dy}{dt} + a_{N}y(t)$$

= $b_{N-M}\frac{d^{M}x}{dt^{M}} + b_{N-M+1}\frac{d^{M-1}x}{dt^{M-1}} + \dots + b_{N-1}\frac{dx}{dt} + b_{N}x(t)$

- Use compact notation **D** for operator d/dt, i.e $\frac{dy}{dt} \equiv Dy(t)$ and $\frac{d^2y}{dt^2} \equiv D^2y(t)$ etc.
- We get: $(D^N + a_1 D^{N-1} + \dots + a_{N-1} D + a_N) y(t)$ = $(b_{N-M} D^M + b_{N-M+1} D^{M-1} + \dots + b_{N-1} D + b_N) x(t)$

or

$$Q(D)y(t) = P(D)x(t)$$

$$Q(D) = D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N}$$
$$P(D) = b_{N-M}D^{M} + b_{N-M+1}D^{M-1} + \dots + b_{N-1}D + b_{N}$$

Linear Differential Systems (4)

- Let us consider this example again:
- The system equation is: $\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y(t) = \frac{dx}{dt}$

This can be re-written as:

$$(D^2 + 3D + 2)y(t) = Dx(t)$$
$$Q(D) \qquad P(D)$$

Also
$$\int_{-\infty}^{t} y(\tau) d\tau \equiv \frac{1}{D} y(t)$$
$$\frac{d}{dt} \left[\int_{-\infty}^{t} y(\tau) d\tau \right] = y(t)$$

- For this system, N = 2, M = 1, a₁ = 3, a₂ = 2, b₁ = 1, b₂ = 0.
- For practical systems, M ≤ N. It can be shown that if M > N, a LTI differential system acts as an (M – N)th-order differentiator.
- A differentiator is an unstable system because bounded input (e.g. a step input) results in an unbounded output (a Dirac impulse δ(t)).