Stability

System External Stability

Externally stable systems: Bounded input results in bounded output (system is said to be stable in the BIBO sense)

Electrical System

$v(t)=R i(t)$

$i(t)=C \frac{d v}{d t}$

$v(t)=L \frac{d i}{d t}$

Mechanical System

Linear Differential Systems (1)

- Many systems in electrical and mechanical engineering where input $x(t)$ and output loop current $y(t)$ are related by differential equations
- For example:

$v_{L}(t)+v_{R}(t)+v_{C}(t)=x(t)$
$\frac{d y}{d t}+3 y(t)+2 \int_{-\infty}^{t} y(\tau) d \tau=x(t)$
$\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y(t)=\frac{d x}{d t}$

Linear Differential Systems (2)

Find the input-output relationship for the transational mechanical system shown below. The input is the force $x(t)$, and the output is the mass position $\mathrm{y}(\mathrm{t})$

Linear Differential Systems (3)

- In general, relationship between $x(t)$ and $y(t)$ in a linear time-invariant (LTI) differential system is given by (where all coefficients a_{i} and b_{i} are constants):

$$
\begin{aligned}
& \frac{d^{N} y}{d t^{N}}+a_{1} \frac{d^{N-1} y}{d t^{N-1}}+\cdots+a_{N-1} \frac{d y}{d t}+a_{N} y(t) \\
& \quad=b_{N-M} \frac{d^{M} x}{d t^{M}}+b_{N-M+1} \frac{d^{M-1} x}{d t^{M-1}}+\cdots+b_{N-1} \frac{d x}{d t}+b_{N} x(t)
\end{aligned}
$$

- Use compact notation D for operator $d / d t$, i.e $\frac{d y}{d t} \equiv D y(t)$ and $\frac{d^{2} y}{d t^{2}} \equiv D^{2} y(t)$ etc.
- We get:

$$
\begin{aligned}
& \left(D^{N}+a_{1} D^{N-1}+\cdots+a_{N-1} D+a_{N}\right) y(t) \\
& \quad=\left(b_{N-M} D^{M}+b_{N-M+1} D^{M-1}+\cdots+b_{N-1} D+b_{N}\right) x(t)
\end{aligned}
$$

or

$$
\begin{gathered}
Q(D) y(t)=P(D) x(t) \\
Q(D)=D^{N}+a_{1} D^{N-1}+\cdots+a_{N-1} D+a_{N} \\
P(D)=b_{N-M} D^{M}+b_{N-M+1} D^{M-1}+\cdots+b_{N-1} D+b_{N}
\end{gathered}
$$

Linear Differential Systems (4)

- Let us consider this example again:
- The system equatinn is-

$$
\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y(t)=\frac{d x}{d t}
$$

- This can be re-written as:

$$
(\underbrace{\left.D^{2}+3 D+2\right)}_{Q(D)} y(t)=\underbrace{D x(t)}_{P(D)}
$$

- For this system, $\mathrm{N}=2, \mathrm{M}=1, \mathrm{a}_{1}=3, \mathrm{a}_{2}=2, \mathrm{~b}_{1}=1, \mathrm{~b}_{2}=0$.

$$
\begin{array}{ll}
\hline \text { Also } & \int_{-\infty}^{t} y(\tau) d \tau \equiv \frac{1}{D} y(t) \\
& \frac{d}{d t}\left[\int_{-\infty}^{t} y(\tau) d \tau\right]=y(t)
\end{array}
$$

- For practical systems, $\mathrm{M} \leq \mathrm{N}$. It can be shown that if $\mathrm{M}>\mathrm{N}, \mathrm{a}$ LTI differential system acts as an ($\mathrm{M}-\mathrm{N}$)th-order differentiator.
- A differentiator is an unstable system because bounded input (e.g. a step input) results in an unbounded output (a Dirac impulse $\delta(t)$).

