Stability



System External Stability

¢ Externally stable systems: Bounded input results in bounded output
(system is said to be stable in the BIBO sense)
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Linear Differential Systems (1)

¢ Many systems in electrical and mechanical engineering where input x(t)
and output loop current y(t) are related by differential equations

¢ Forexample:
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Linear Differential Systems (2)

Find the input-output relationship for the transational mechanical

system shown below. The input is the force x(t), and the output is the
mass position y(t)
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Linear Differential Systems (3)

+ In general, relationship between x(t) and y(%) in a linear time-invariant (LTI)
differential system is given by (where all coefficients a, and b, are constants):
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¢ or Q(D)y(t) = P(D)x(t)
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Linear Differential Systems (4)

Let us consider this example again:
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This can be re-written as:

(D* +3D + 2)y(t) = Dx(1)
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For this system, N=2 M=1,a,=3,23,=2,b;=1,b,=0.
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For practical systems, M < N. It can be shown that if M > N, a LTI differential
system acts as an (M — N)th-order differentiator.

A differentiator is an unstable system because bounded input (e.g. a step input)
results in an unbounded output (a Dirac impulse &(t)).




